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New boundedness results for solutions of second order
non-autonomous delay differential equations
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We study the boundedness of solutions of some second order non-autonomous delay differential equations by the Liapunov
functional approach. We establish three new results which include sufficient conditions for the solutions of the equations
considered to be bounded. By this work, we improve some boundedness results in the literature, which were obtained on
certain second order ordinary differential equations without delay, to the boundedness of the solutions of some second

order non-autonomous delay differential equations.
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1. Introduction and main results

In applied science, second order nonlinear differential
equations with and without delay are used to model some
practical problems in biology, chemistry, physics,
mechanics, electronics, engineering, economy, control
theory, medicine, atomic energy, information theory, etc.
(see, for example, the book of Ahmad and Rama Mohana
Rao [1] and the reference thereof).

In 1979, Graef [6] considered the second order
nonlinear differential equation without delay,

(a(t)x’)"+h(t, x(t), x(t —r),x'(t), x'(t -

=e(t, x(t),x(t—r),x'(t),X'(t—r)).

We write Eq. (2) in system formas X' =,

y' _,7[3 )y +h(t, x, x(t—

a(t) .y, yt-n)y+aq) f()g(y)l

L9
a(t)

1
+%e(t,x,x(t -

9(y) j F/(x(s)y(s)ds

r)v yi y(t - r))v (3)

where X(t) and y(t) are abbreviated as X and vy,
respectively, and we assume that @, :[t,,0) =R,

>0, f, g:R >N and h,e:[’to,oo)xiR4 — R
are continuous, and @, ( differentiable, a(t) >0,
q(t) >0 and g(x) > 0.

Our motivation comes especially from the paper of
Graef [6]. The principal aim of this paper is to improve the
boundedness results established in Graef [6] for Eq. (1) to
the boundedness of solutions of nonlinear delay

(@@®)x")’ +h(t, x,x)+qt) f (X)g(x) =e(t, x,x). (1)

The author established three theorems which include
some sufficient conditions and guarantee that all solutions
of Eq. (1) are bounded.

In this paper, instead of Eqg. (1), we consider the
second order non-autonomous delay differential equations
of the form

X' +q®)g(x'®) f (x(t—r))
)

differential Eq. (2). By defining three new Liapunov
functionals, we prove the results established here and also
follow a similar way as indicated in [6] for verifying our
main results.

It should be noted that prototypes for studying Eq. (1)
and Eq. (2) are the well known autonomous equations of
van der Pol and Liénard (see Reissig et al. [13], Graef [5])
and the non-autonomous Emden-Fowler equation (see
Coffman and Wong [4], Mustafa and Tung¢ [12] and the
references thereof). For a survey of some results of this
type and the others, in particular, we refer the reader to
the papers of Baker [2], Burton and Grimmer [3], Graef
and Spikes [7, 8, 9], Jin [10], Kroopnick [11], Saker [14],
Sun [15], Tunc¢ [16-24], Tung and Sevli [25], C. Tun¢
and E. Tung [26] and the references contained therein.

The results presented here differ in some respects
from those usually found in the literature. Namely, to the
best of our knowledge, there is no published paper in
recent literature on the boundedness of solutions of the
second order non-autonomous delay differential equations

of the form (2), when a(t)#1,  q(t)#1 and
g(x") #1. This is to say that we did not find any work
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on the boundedness of solutions in the literature, which
based on the results of Graef [6]. In addition, we allow for
large negative damping and do not require that forcing

term e(t, X, X(t —r),y, y(t —r)) be small.

Let q'(t), = max{q'(t), O} and
q'(t)_ = max{—q'(t), O} so that
q't)=0a'(t), —q'(t)_.

Assume that there are nonnegative continuous
functions I, I,, W:[t,,00) = R such that

(4)

et x, x(t—r),y, ytt =) <r,(t) +r,

are bounded forall t >t,, where
$ e CH([t, —r,t,],R), provided
ap

r < .
a,(,C,a

X X
Proof. Since If(s)ds—m as |X| — oo, If(s)ds is
0 0

X
bounded from below, say .[ f(s)ds>—-K for some
0

K > 0. Note also that conditions (8) and (9) imply that

and thereare positiveconstants 8, M, k, a,,q, and ca@)chahat O and q(t) > q, >0, where a, and Q,

ﬂ_ W(t) < h(t1 X, X(t - r)’ y1 y(t - r))a (5)
2

Y < MG(y)for MELS (6)

a(y)
0< f'(X) <a, (7)
ja ) 4 < o, a(t)<a,, ®)
j (S)‘ ds<oo, q(t)<d,, 9)

and

I w(s)ds < oo. (10)

to

Our first result is the following theorem.
Theorem 1. If in addition to conditions (4)-(10), we have

[ f(s)ds > as [ >, ¢, 2g(x)2c>0,
0

(where C and C, are some constants),

Ir (s)ds < coand j

\/_

then all solutions of Eq. (2) defined by the initial function

X() = ¢, x'(t) = ¢'(t)

a(t)

are some constants.
Define the Liapunov functional V =V (t, X, Y, ),

< 1 % s
Vibxy)= )!f a(t)%(t)!g(s)ds

+ﬂ1j jyz(e)deds,

—r t+s
where A, is a positive constant to be determined later.
Let (X,y)=(x(t),y(t)) be a solution of (3).
Differentiating the Liapunov functional V(t,X,,Y,)
along this solution, we get

SV v
_a (t) q'() |
(j f(s)ds+K) — 0 ! = s
. a (t) > Nt X x(E-r),y,yt-r)
a(t)a(t)a(y) a®a(t)a(y)
+ e(t’ X, X(t — r), Y, y(t B r))y
a(t)a(t)a(y)

% [ 1) y(s)ds + 4ry* = 24 [y (s)ds.

In the light of the assumptions of 0 < f'(X) <,
a, <a(t) and the inequality 2|UV|SU2 +v2, it
follows

| t
j F/(x(s))y(s)ds <— J (X(s))]y(s)|ds <—y to j y* (s)ds.

1 t-r
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By using the assumptions of the theorem and the
foregoing inequality, we obtain

d
d_V(t’Xt’yt) S

a(t) (jf(s)ds+K)+ (UMY

Lds
a°(t) 5 9s)

M. .,

.\ w(t)y®
a(t)qt)a(y)

at)a®a(y)
r(t)]y|
a(t)q(t)a(y)
r(t)y?
at)a®)g(y)

r 2 t 2
+[;—al+/11r]y +[2ial—ﬂqjt:[ry (s)ds.

a
Let A, = —. Hence, we have
1

d
d_V(t’Xt’yt) S

qt)_t s
f(s)d —d
(j (s)ds+ K) + 20 0® S
N a'(t)_ 2, w(t)y*
a(t)qt)a(y) a(t)qt)a(y)
r(t)]y|
a(t)q(t)g(y)
+ r,(t)y’ _( p _a_r)yz'
aa®a(y) \a,g,c, &
a,p

a,0,C,a

a (t)

Using the estimate I < , it follows

d
d_V(t’Xt’yt) <

a (t)

q'(t) ¢
(j f(s)ds+K) + o) @ds

w(t)y?
a(t)a®a(y)

r(t)y*
a(t)at)g(y)

a'(t)_ 2
+ +
a(t)qt)a(y)
r(t)y|
a(t)a(t)a(y)

Moy .
>1 n <—+1 and i
If q(t) the m q(t)+ and if
|y| <1 then |y| Sy—2+1 Also, for
a(t) Ja@®  a
|y|§k, y’ N for some N>0, so
2 <N+ MG(y) forall y. Hence,
a(y)
EHIE
allt). aq'®. M
{(M = 0 0 a_lw(t”a_lr(t)}
Na(t)_ 1 r(t)
w(t t)+
" 080 am ()+q " e a0
n® oy

aw/q (t ) 9(y)

{(M+l)a’(t) + 40O —W(t)+Mr2(t) LOR }v

a® o a e e Jaw
alt). 1 1 A ()
{a(t) a W+ 1r2(t)} calm
. N n@®
a,0, \/q(t)
=k, (OV +k, (1),
where
k()= (M 1)"";(?)* % o <>+fr2<) aﬂj%
aE. 1 1 1 ()
k,(t)=— [ a(0) alW(t)+alr2(t)} Calm
. N n@®
a,0, Jq(t)

Integrating the last above inequality from O to t, it
follows

V(t, X, ¥) <V (0, %y, ¥o)

+ j K, (S)V (s, X, ys)ds+_tfk2(s)ds.
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Applying the Gronwall-Reid-Bellman inequality, (see
Ahmad and Rama Mohana Rao [1]), and observing

J.kl(s)ds < oo and Ikz (s)ds < oo, we immediately
0 0

obtain that V(t,X,,Y,) is bounded. Further, since

a(t) <a,, we have that F(X(t)) is bounded from

which we have that X(t) is bounded for all t >t, > 0.
This completes the proof of Theorem 1.

Our second result is the following theorem.
Theorem 2. Suppose conditions (5)-(8) and (10) hold,

there is a continuous function I :[t;,00) >R and a
constant d > O such that

¢, 2 g(x’) >0,

et x, x(t 1), y(t - )y <« 309V
re(t)

T ") g5 <, Tdids <o, Ho="O
to I’(S) t r (S) q(t)
is bounded,

and
]E H'(s). ds < oo
H(s)

X
it [ f(s)ds > o0 as [ >,
0
then all solutions of Eq. (2) defined by the initial function

X(t) = g(t), X'(t) =¢'(t)
for all t=>t,,
pna

¢,Q,ra,x

are bounded where

e C([t, —r,t,],R), provided r <
Proof. Again we have I f(s)ds >—-K  for some

0
K > 0. Define the Liapunov functional

Vit X, ¥,) =
1 %+ s
+K)+ — | ——ds
a(t)H<t>(I R LD
mzj jyz(e)deds,

where A, is a positive constant to be determined later.
Let (X,y)=(x(t),y(t)) be a solution of (3).
Differentiating the Liapunov functional V,(t,X,,Y,)
along this solution, we get

d
Evl(t’ Xis yt) -
_['OHO +a®H'O]
a'MH'M
A e hxx(E-r)y, y(t-r)
rta(t)g(y) rha(t)g(y)
LB x(-r),y,y(t-r)y
a(t)r(t)g(y)

L 9®y
a0 j F/(x(s))y(s)ds

t
+A,ry% - A, _[ y?(s)ds.
t-r
Making use of the assumptions of Theorem 2,

O s 4
0le0

y2

it follows

am)|y|
r(hact) 2,
_ G0r

B 2rla 2ra Iy (s)ds.

1 t-r

UOY_ [ ¢(x(syyy(s)ds <

rha() /, [ £ 0o)ly(©)lds

Hence, in the light of the assumption of Theorem 2, we

obtain

d

avl(t! X s yt) <

EOHO-ZOH O 5, ) PO
a’(OH? () 0 5 9()

a0 e, W)
"roamey’ " rmamoy)

+ - 1q(t) _ ﬂ _ q2a +/12 r y2
rea) |[nac \2ny
g,a t 2
- A, - s)ds.
( ) 2r1allfry (s)
Let 4, = 92
2ra,
iV (t,x.,y,) <
dt 1 1M Jt -

OO 20RO g5, ) TO- ]S

. Hence, we get

a’(t)H?(t)
a'(t) 2, w(t) y?
r(t)a(t)g(y) r(t)a(t)g(y)

q(t) _( B Qo

2
+ — 27y |y
Fimat)  nac  ha Jy
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ﬂ r-l al

C,Q,ra,x

Using the estimate I < and the assumptions

of Theorem 2, we have

d
avl(t’ X yt) <

H'(t). 20 1
[ no M %0 e (t)}
N a'tty. N w(t) N 1
att,  ra,  r'(tH,a,

Finally, as in the proof of Theorem 1, it follows that X(t)
is bounded.

If we consider the special case of Eq. (2) with g(X') =1,
namely, we take into consideration the second order non-
autonomous delay differential equation

(@a)x)" +h(t, x(t), x@t —r),x'@®), X't —n)X'(t) +qt) f (x(t —r))
= e(t, X(t), X(t — ), X'(t), X'(t = r)).

(11)
We write Eq. (11) in system form as
X'=y,
y'= —@[a Oy +ht, x, xt—r),y, yt—r))y +at) f ()]
q() 5 J oy
1
+——e(t, X, x(t=r),y,yt—r)). (12)
a(t)

Our last result is given by the following theorem.
Theorem 3. Suppose conditions (4) and (5) hold,

I(a(s)q(s» o I r,(s)
a(s)q(s) " a(s)als)

W), 760
o e

dS<oo,

ds <o

and

X
If I f(s)ds —> o as |X| —> oo, then all solutions of

Eqg. (11) defined by the initial function

X() = ¢, x'(t) = ¢'(t)

are  bounded for all t=>t,, where

pe Cl([to - l’.to], R), provided that I < i
aq,

Proof.

V, (X, Y,) =

Define the Liapunov functional

8y +2(J'f(s)ds+K)

+ A, j Iyz (6)d&ds,
—r t+s
where K >0 is defined as before and A, is a positive

constant to be determined later.
Let (X, y)=(X(t),y(t)) be a solution of (12).

Differentiating the Liapunov functional V,(t,X,,Y,)
along this solution, we get

d at)qg'(t
EVZ (t! X yt) = (qz(ztg )
_w yi - 2h(t, X, x(t=r),y,y(t-r))
q(t) q(t)
N 2e(t, x, x(t=r),y,y(t-r))y
q(t)

+2y Jt' f/(x(s))y(s)ds — +A,ry* — 4, j' y?(s)ds.

t-r t-r

In the light of the assumptions of 0 < f'(X) <« and
the inequality 2|uv| <u? +V?, itfollows

2y'[ f'(x(s))y(s)ds < 2|y| J. f/(x(s))|y(s)|ds < ary? + _[ y?(s)ds.

t-r t-r t-r

By using the assumptions of the theorem and the foregoing
inequality, we obtain

d (aMa)’ , 2wt) . 28 .
dtvz(t,xt’yt)— q (t) q(t) y g, y
2r,(t)y|
L 2n @y
q(t)
+ Zrzq ((tt))y a2y @) erz(sods-

Let A, = a. Hence, we have
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d _(a(t)a®))’ ., 2w(t) -
a PR Y g
2r(t)y| | 2r,(t)y? 4 2
-2(40, - .
T e AT
Using the estimate I < i, it follows

aq,

_(a®a(®))’ y2 4 2w(t)
q*(t) qt)

n 2rl(t)|y| + 2r, (t)y2 _
q(t) q()

d
avz (t! Xt’yt) <

Hence, we have

d
avz (t1 X yt) <

(OO, 2w | 260 260 |, |, 260)
ahqt)  a®) a4 o) a®) | Jaw

The remainder of the proof follows as before.
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